当前位置:
首页
新闻中心
- 01-06如何正确使用显微镜如何正确使用显微镜,常见的误区有哪些
- 01-03白光干涉显微镜的原理是什么?有哪些应用?白光干涉显微镜目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了白光干涉仪,其它的仪器无法达到其加工精度要求。 白光干涉显微镜的原理: 光源发出的光经过扩束准直后经分光棱镜后分成两束,一束经被测表面反射回来,另外一束光经参考镜反射,两束反射光最终汇聚并发生干涉,显微镜将被测表面的形貌特征转化为干涉条纹信号,通过测量干涉条纹的变化来测量表面三维形貌。白光干涉三维形貌仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分成两束光,分别投射到样品表面和参考镜表面。 从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度。 白光干涉显微镜的应用: 用来测量三维微观形貌的。白光干涉仪可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料及制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、国防军工、科研院所等领域中。可测各类从超光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等。
- 12-02OLYMPUS BX53M显微镜让观察变得更简单OLYMPUS BX53M显微镜,奥林巴斯推出的工业金相显微镜BX53M系列采用了模块化设计,为材料学和工业应用提供了多样化的解决方案。BX53M改进了与Stream软件的集成性,从而为常规显微镜检查和数码成像用户提供了从观察到报告创建的无缝工作流程。BX53M根据工业和材料学的不用应用,可以组合成反射显微镜、透反射显微镜、红外显微镜、偏光显微镜等多种应用的显微镜。 OLYMPUS BX53M显微镜:高级的显微观察,便捷的显微操作 1.用户友好性:显微镜内置系统是简单且具有向导设置的模式,让用户更容易进行调节,并复制系统设置 2.功能性:BX3M为传统的工业显微镜检查而设计,并扩展了其功能,以满足更广泛的应用和检查技术的要求。 3.精密的光学元件:奥林巴斯公司具有生产高质量光学元件的悠久历史,无论用目镜观察,还是通过显示器观察,都具备一流的图像画质。 4.全面可定制性:模块化设计可以为用户灵活地构建满足其特殊要求的系统。 OLYMPUS BX53M显微镜特点: 1.直观的显微镜控制舒适而便于使用。BX3M通过优良的设计和便捷的控制功能,简化了复杂的显微检查任务。用户不需要长时间的培训即可掌握显微镜的大多数功能。 2.编码硬件:很容易恢复显微镜设置。BX3M将显微镜的硬件设置与图像分析软件整合在一起,将观察方法、照明强度和物镜位置全都记录在软件或手动控制器里,文档记录更加方便,既节省了操作者的时间,又最大程度减小了使用不正确设置的概率。 3.先进的成像。BX3M保留了常规显微镜检查的传统衬度对比法,比如明场、暗场、偏光和微分干涉。随着新材料的发展,现在可以使用先进的显微镜检查技术来进行更精确和更可靠的检查,从而解决了以往很多使用传统衬度对比法检查时遇到的缺陷检测方面的困难。 4.MIX组合式观察:让以往看不见的图像显示出来。BX3M的MIX组合式观察技术组合了明场和暗场照明方法。MIX组合式照明滑块中的LED光源,以定向暗场光线照射样品,这种方式类似于传统暗场照明,但又具有更大的灵活性。这种明场与定向暗场的组合称为MIX组合式照明,对突出显示缺陷和区分隆起与凹陷表面很有用处。
- 11-04如何提高原子力显微镜的成像质量?提高原子力显微镜的成像质量是实现高质量原子和分子结构表征的关键。以下是一些提高原子力显微镜成像质量的方法: 1、优化样品制备:样品的质量对它的成像质量至关重要。确保样品表面平整、无污染,并尽可能减少表面粗糙度。在可能的情况下,对样品进行适当的处理,如清洗、干燥、退火等,以提高成像质量。 2、选择合适的探针:探针的形状、材料和刚度对其成像质量有重要影响。选择具有合适几何形状和刚度的探针,以减少探针与样品之间的相互作用力,提高成像分辨率。 3、优化扫描参数:扫描参数如扫描速度、扫描范围等对它的成像质量有重要影响。通过优化扫描参数,可以减少扫描过程中的噪声和伪影,提高成像质量。 4、采用适当的图像处理技术:图像处理技术如滤波、增强、去噪等可以进一步提高它的成像质量。通过应用适当的图像处理技术,可以减少噪声、增强图像对比度,提高图像分辨率。 5、保持仪器稳定:保持其的稳定对于提高成像质量至关重要。定期对仪器进行维护和校准,确保仪器处于最佳工作状态。同时,避免在测量过程中对仪器进行不必要的调整,以减少误差和干扰。 总之,提高原子力显微镜的成像质量需要综合考虑多个因素,包括样品制备、探针选择、扫描参数、图像处理技术以及仪器稳定性等。通过不断优化实验条件和实践经验积累,可以获得更高质量的图像,为科学研究和技术应用提供更准确的信息。
- 11-01进口金相显微镜的维护和保养要点有哪些?进口金相显微镜是一种高精密度的光学仪器,主要用于观察金属、陶瓷、塑料、半导体等材料的微观结构。为了确保金相显微镜的性能稳定和使用寿命,我们需要对其进行定期的维护和保养。以下是进口金相显微镜的维护和保养要点: 1、清洁镜头:镜头是其核心部件,需要定期清洁。使用镜头纸或专业的镜头清洁液轻轻擦拭镜头表面,避免使用含有腐蚀性的清洁剂。同时,注意不要触碰镜头表面,以免刮伤。 2、清洁载物台:载物台是放置样品的平台,容易沾染灰尘和污渍。使用干净的软布定期擦拭载物台表面,保持其清洁。 3、检查光源:光源是照明设备,需要定期检查其亮度和稳定性。如发现光源亮度不足或闪烁,应及时更换灯泡。 4、调整焦距:在使用时,需要经常调整焦距。为了保持焦距的准确性,应定期对焦距进行调整和校准。 5、检查机械部件:进口金相显微镜的机械部件包括粗微调、细微调、载物台移动装置等。定期检查这些部件的运行是否正常,如有异常应及时处理。 6、防潮防尘:应存放在干燥、通风、无尘的环境中。避免将其放置在潮湿、多尘的地方,以免影响其性能和使用寿命。 7、避免震动:它是一种高精密度的仪器,应避免剧烈震动。在搬运时,应轻拿轻放,避免碰撞。 8、定期维护:为了确保其性能稳定,建议每年进行一次专业的维护和保养。可以联系厂家或专业维修机构进行维护。 9、使用规范:在使用时,应遵循操作规程,避免不当操作导致损坏。同时,注意不要随意拆卸部件,以免影响其性能。 10、存储条件:在不使用时,应将其遮盖好,避免灰尘污染。同时,确保存储环境的温度和湿度适宜,避免受潮或受热。 总之,进口金相显微镜的维护和保养要点包括清洁镜头和载物台、检查光源、调整焦距、检查机械部件、防潮防尘、避免震动、定期维护、使用规范和储存条件等方面。通过以上措施,可以确保其性能稳定和使用寿命。
- 10-13显微镜调整物镜以获得清晰图像 具体操作在半导体行业使用显微镜调整物镜以获得清晰图像,有以下一些特殊的考虑和步骤: 一、准备工作 1. 环境稳定 - 半导体制造环境通常对温度、湿度和洁净度有严格要求。确保显微镜放置在稳定的工作台上,所在环境的温度和湿度保持在规定范围内,避免因环境因素导致的光学元件变形或标本变化影响成像清晰度。例如,在一些高精度的半导体检测中,环境温度偏差可能导致物镜和标本的热膨胀系数不同,从而影响焦距。 2. 标本准备 - 半导体标本通常非常微小且结构精细。确保标本平整地放置在载物台上,并且没有灰尘或杂质污染。对于芯片等半导体标本,可能需要特殊的固定装置来保证其位置的准确性。 二、物镜调整步骤 1. 低倍物镜初步聚焦(与普通显微镜类似但更精确) - 选择低倍物镜:转动物镜转换器,将低倍物镜(如5x或10x)对准通光孔。在半导体行业,低倍物镜用于快速定位感兴趣的区域。 - 粗调焦距:从侧面注视物镜,缓慢转动粗准焦螺旋使镜筒下降,接近标本但不接触(距离可能在0.3 - 0.5厘米左右,比普通显微镜更精确)。然后从目镜观察,反向转动粗准焦螺旋使镜筒上升,看到模糊图像后,微调细准焦螺旋至图像初步清晰。由于半导体结构的微小性,这一过程需要更加仔细地观察。 2. 高倍物镜精确聚焦 - 转换高倍物镜:将感兴趣的区域移到低倍物镜视野中心,然后转换高倍物镜(如50x或100x)。在半导体检测中,高倍物镜用于详细观察微观结构,如芯片的电路布线等。 - 细调焦距:仅使用细准焦螺旋调节焦距。由于半导体结构的复杂性和高倍物镜的浅景深,需要非常小幅度地转动细准焦螺旋来获得清晰图像。可能需要反复微调以确保整个感兴趣区域都清晰。 3. 特殊物镜(如深紫外物镜等)调整 - 如果使用特殊的物镜,例如用于检测半导体光刻胶层的深紫外物镜: - 确保物镜的光学性能与所使用的光源波长匹配。例如,深紫外物镜是为特定的深紫外波长设计的,要保证光源发出的深紫外光能够正确地通过物镜成像。 - 在调整这类物镜时,由于深紫外光的能量较高且对光学元件要求特殊,需要更加注意避免物镜受到污染或损坏。调整过程中同样遵循先低倍后高倍的原则,并且在聚焦时要考虑到深紫外光下半导体材料的光学特性可能与可见光下有所不同,可能需要根据经验或特定的校准方法进行微调。 4. 校准和质量控制 - 在半导体行业,显微镜物镜的调整可能需要定期进行校准。使用标准的校准标本(如具有精确已知尺寸的半导体结构样板)来验证物镜的聚焦准确性和成像质量。如果发现成像不清晰或不准确,可能需要对显微镜进行维护,包括清洁物镜、调整光路等操作。例如,物镜表面的微小尘埃颗粒在半导体微观结构成像时可能会造成严重的干扰,所以要定期清洁物镜。
- 10-13关于光刻胶小知识光刻胶,又称为光阻剂或光刻材料,是半导体制造过程中使用的一种关键材料。它在光刻技术中扮演着至关重要的角色,用于在半导体晶圆上形成微细的图案和结构。 一、光刻主要由曝光、显影、刻蚀等主要步骤组成。为了增强图案传递的精确性和可靠性,整个过程还包括涂胶、去水烘烤(Dehydration)、涂底(Priming)、软烤(Soft Bake)、硬烤(Hard Bake)等步骤。 二、光刻胶是一种对光敏感的聚合物,受到光辐照之后发生光化学反应,其内部分子结构发生变化,在显影液中光刻胶感光部分与未感光部分的熔解速度相差非常大。由三种成分组成:感光剂 (Sensitizer),树脂(Resin),溶剂(Solvent),根据对光作用后产生的不同化学反应,把光刻胶分成两类:正胶、负胶。 三、光刻胶的使用: 1、涂布:通过旋涂、喷涂等方式将光刻胶均匀涂布在基板上。 2、曝光:使用光刻机将图案转移到光刻胶上。 3、显影:使用显影液将曝光部分或未曝光部分溶解,形成所需图案。 4、后处理:进行烘烤、蚀刻等后续处理,最终形成所需的微结构。 四、光刻胶发展趋势: 1、高分辨率高分辨率: 目标:实现更精细的图案。 技术:引入更短波长的光源(如极紫外光)和新型光刻胶材料。 2. 低缺陷率: 目标:减少制造过程中的缺陷。 技术:优化光刻胶配方和制备工艺。 3. 多功能性 目标:提高光刻胶的多功能性,适应更多应用场景。 技术:开发具有特殊性能的添加剂和新型树脂。
- 10-10显微镜基础及图像形成原理